
Improved Rendering for Connectome Visualization
Using Real-Time Raytracing

Sebastian Kopacz
Computer Science

University of Calgary
Calgary, Canada

sebastian.kopacz@ucalgary.ca

Abstract—Current connectome visualizations use simple or
unlit shading techniques with a set of colors depicting different
neuron types. Unfortunately, the lack of lighting information
causes the resulting renders to appear flat and homogeneous. This
approach may be problematic, as it not only degrades visual
appeal but also makes the visualization difficult to analyze. As a
solution, I wrote a renderer that used lighting techniques such as
shadows or ambient occlusion to improve the visual clarity of
connectome map visualizations. Using ambient occlusion alone
resulted in better visual quality than combining it with shadows.

Keywords—Neuroimaging, Connectome, Visualization, Ambient
Occlusion, Shading, Raytracing, Rasterization, Deferred Rendering

I. INTRODUCTION

 Connectome maps aim to comprehensively map all the
neural connections within a given organism’s nervous system.
These maps allow researchers not only to better understand the
nervous system of the organism that they are studying but also
to simulate it, as has been done with Caenorhabditis elegans [1].
Additionally, connectome maps allow for visualizations which
can depict individual neurons. This makes for stunning visuals
during publications as well as being able to aid in understanding
and teaching neuroscience concepts.

 Unfortunately, current visualization techniques tend to use
basic or completely unlit shading. Due to our visual system’s
reliance on lighting information, the lack of proper shading
techniques decreases both the visual appeal and informative
value of those visualizations. For instance, without proper
lighting information, depth and edge detection become harder,
which essentially makes the image appear flat and
homogeneous [2]. This makes it more difficult to visually trace
individual neurons as can be seen in Fig. 1. Using distinct colors
for different neurons can help alleviate this issue but there will
still be self-overlapping problems due to the branching nature of
neurons. In addition, current visualizations tend to only use
distinct colors for neuron types instead of unique colors for each
neuron in a scene. This will inevitably result in visualizations
with multiple unique neurons depicted in the same color, further
decreasing visual clarity. Thus, simply including lighting
information, by using various shading techniques such as
shadows and ambient occlusion (AO) should considerably
improve the clarity and visual appeal of connectome
visualizations. Raytracing is preferred over rasterization as
global lighting requires scene data. Since raytracing is more
expensive than rasterization, optimizations and sufficiently
powerful hardware are necessary for an interactive renderer.

Fig. 1. Example of existing visualization techniques for connectome data as
used by the hemibrain connectome project [3].

 Therefore, my plan for this project was to implement and
evaluate a real-time raytracer render engine with various global
lighting effects for connectome visualization. I primarily wanted
to explore shadows and ambient occlusion since those seemed
to be the most impactful lighting effects for increasing the visual
appeal and readability of a connectome visualization. Shadows
help estimate depth by grounding objects within a scene.
Meanwhile ambient occlusion reveals depth detail in objects by
darkening cavities that are likely occluded from most light
sources in the scene. As mentioned previously, raytracing is
preferred over rasterization because scene information is
directly accessible, which allows for better lighting effects. With
rasterization, it is impossible to check for other geometry when
shading a given fragment (triangle). This is a fundamental
limitation of rasterization necessitating the development of
various hacks to approximate effects which can be trivially done
using raytracing [4]. An example of visual discrepancy between
a trivial raytraced solution and an unnecessarily complicated
rasterized workaround can be clearly seen in Fig. 2 with regards
to ambient occlusion.

 The main downside of raytracing is its performance penalty
but thanks to a combination of algorithms, optimizations, and
custom hardware, nontrivial real-time raytracing is possible on
consumer grade hardware. Nvidia created the most accessible
and well packaged solution for real-time raytracing when they
made their RTX series graphics cards [5]. Their solution neatly
packaged a hardware accelerated ray-triangle intersection solver
with well optimized software for generating the bounding
volume hierarchy (BVH) for a given scene. Therefore, allowing
for the computation of around 10 billion rays per second in ideal
conditions [6]. For a large connectome visualization, I expect
that value to be closer to 2 billion rays per second.

Fig. 2. Comparison between raytraced ambient occlusion (RTAO) and
rasterized ambient occlusion (SSAO) [7]. As evident the raytraced version is
considerably shaper and has fewer inaccuracies than the rasterized equivalent.
Take specific note of the couch and basket.

II. METHODOLOGY

A. Materials

I developed the entire project using CLion on Windows 10.
As such, the entire program was written in C++ and used the
CMake build system. Libraries used in this project were assimp,
glfw, mingw-std-threads, spdlog, glm, simpleini, stb, and
vulkan-headers. The version of Vulkan used for this project was
version 1.1.101.0. Additionally, a Python script was written to
generate an image with light ray directions. Version control was
done using Git with the repository self-hosted on my server.

In terms of hardware the project was mainly developed on
my desktop using an RTX 2080 GPU. This was only necessary
for using hardware accelerated raytracing and I was still able to
use my laptop with a Nvidia 960m GPU when working with just
the rasterizer.

B. Connectome Dataset

The hemibrain connectome by the research group at the
Janelia Research Campus is currently the largest synaptic-level
connectome [3], [8]. Their goal is to create a map with synaptic
resolution of the adult fruit fly (Drosophila melanogaster), a
species often used in neuroscience research [3], [8]–[10]. They
also made their entire dataset publicly available. My first
objective was to write or find a program to open or convert swc
files into a more common model format. I began by researching
how neuron skeletons were stored in a swc file format [11], [12].
This allowed me to write a simple swc loader which simply
place objects at the vertices specified in the swc file. However,
in the interest of time, I switched to using SWC Mesher, a
Blender addon for converting swc files into obj files [13].
Therefore, refocusing the project on building a render engine
rather than a neuron modeler.

C. Renderer

 Last winter, I wrote a render engine which used Nvidia’s
hardware-accelerated raytracing technology [14]. That render
engine was reused as a starting point for this project. However,
some refactoring was necessary as my focus last year was on
learning Vulkan and RTX which lead to a suboptimal
implementation. While refactoring the renderer, I also added or
fixed various features that I neglected last year. These upgrades
improved the overall quality of the render engine which made it
considerably easier to work with. Once those upgrades were
completed, I focused on features that were necessary for the
current project, such as implementing lighting effects and
loading neurons.

 Optionally, I hoped to combine all the lighting effects with
deferred rendering as illustrated in Fig. 3. This would result in a
hybrid render engine that would use rasterization for local
lighting and raytracing for global lighting. The hybrid render
engine would lead to better visuals at a lower performance cost
by combining the best of both rendering techniques. Sadly,
instead of a fancy deferred rendering pipeline, I essentially wrote
a single monolithic shader that computer raytraced diffuse
lighting, shadows, and ambient occlusion in a single pass.
Related to that, enabling and disabling features required
modifying the shader file and recompiling it. Although this was
undesirable from a long-term maintainability perspective, it was
acceptable for the purposes of the project.

Fig. 3. Hybrid rendering pipeline in Project PICA PICA as presented by
Tomasz Stachowiak from Electronic Arts at Digital Dragons 2018 [15].

D. Lighting

 Implementing raytraced ambient occlusion was my primary
focus. This was because the render engine I was reusing already
supported raytraced shadows and ambient occlusion was
expected to add depth detail to the scene. If I completed that with
time to spare, my plan was to add as many lighting effects as
possible. With the goal being a more readable and appealing
visualization.

 Ambient occlusion works by sending rays in every direction
around the point that is being shaded and checking if they hit
anything. The length of those rays determines how far away
intersections with other geometry are counted as occlusions.
Since checking every possible direction is impractical, only a
handful of rays are cast. Those rays are uniformly distributed in
every possible direction around the point and are cast in a
random order as can be seen in Fig. 4.

 For this, I wrote a Python script which generated an image
texture that contained the directions light should travel in.
Unfortunately, this process compressed the directions to only
those that can be represented in an 8-bit rgb image. This is likely
why the texture based on values from the Halton sequence was
repetitive as can be seen in Fig. 5. Conversion from �, �, � floats
that were between -1 and 1 to �, �, � integers that were between 0
and 255 was done using (� + 1) ∗ 128. The reason for using an
image as opposed to a single value was to vary the light direction
for each ray. Otherwise, I would have a single light source for
the entire scene resulting in direct shadows.

 Calculating directions was based on the Global Illumination
and Path Tracing lesson from Scrachapixel 2.0 [16]. I first
generated a sequence of random values uniformly distributed in
the range [0,1]. This was done using Python’s random function
since the Halton sequence resulted in a repeating image as can
be seen in Fig. 5. Repetition was undesirable because the image
was accessed linearly based on screen coordinates and sample
count. Therefore, propagating obvious texture repetitions to the
final render. The following equations were used to compute the
directions light rays should be cast: � = �1 − �� ∗ �� ∗ cos(2���),

� = �1 − �� ∗ �� ∗ sin(2���) and � = �� where �� and �� are
consecutive values from the sequence of uniformly distributed
values ranging from 0 to 1.

 The directions from the image had to be transformed to the
surface normal of the point that they were used for. To do this, I
created a transformation matrix consisting of the surface normal
and two other orthogonal vectors. The first of those vectors was
computed using �0, −��, ��� where � is the normal vector. The
second vector was computed using a cross product of the normal
vector with the first vector. Finally, the transformation matrix
was created from the first, second, and normal vectors. The
direction could then be easily transformed to the surface normal
of the spot it was needed for by multiplying it with the
transformation matrix for that point.

Fig. 4. Hemisphere sampling for calculating global illumination effects like
ambient occlusion. The left image is based on values from the Halton sequence,
while the right image is based on completely random values. As evident, using
values from the Halton sequence results in more uniformly distributed points
on the hemisphere. Color intensity of each point relates to the order in which it
was drawn, with darker points being drawn before lighter points. This is
important as it illustrates that the points are placed in a random order on the
hemisphere.

Fig. 5. Samples of the textures storing hemisphere directions for calculating
ambient occlusion. The top texture is based on values from the Halton sequence
while the bottom texture is based on completely random values. As evident, the
top image has repetition while the bottom image is sufficiently random.

E. Performance Evaluation

 My hope was to achieve real-time rendering, which I defined
as around 60 frames per second on a consumer grade RTX GPU.
I also planned on assessing the performance cost of each lighting
effect. This feature would have helped determine which features
were worth using as well as evaluate the interactivity of the
render engine.

III. RESULTS

 Unfortunately, when I planned this project, I was expecting
considerably fewer bugs and complications than I ended up
encountering. This miscalculation meant that by the time I
updated my renderer and was able to load neurons from the
hemibrain connectome, I had only enough time to implement
ambient occlusion. Despite running out of time to implement
additional lighting effects, I was still able to complete the main
shading features I had set out to implement. Fig. 6. shows all
these effects in action on a satellite test model I had created [17].
This model had excellent topology with self-shadowing and
detailed crevices making it ideal for showcasing shadows and
ambient occlusion. Sadly, the generated neurons have noticeably
worse topology with fewer crevices. As a result, neurons had
more lighting artifacts than the satellite model.

 Additionally, decreasing the ray distance when calculating
ambient occlusion further contrasts crevices with flat or round
regions of the model. This effect is visualized in Fig. 7. where I
decreased the AO ray distance from 1 to 0.01. Unfortunately,
this effect would not be applicable for neurons as they do not
have sharp crevices like the satellite model. Decreasing the ray
distance is a trade off since now there is no large-scale ambient
occlusion. For instance, as seen in Fig. 6. the inside of the dish
is completely white whereas it had been darker previously.

 Applying ambient occlusion to a single neuron darkens the
inside parts of branch attachments as seen in Fig. 8. This is
consistent with intuition since as seen previously, ambient
occlusion darkens crevices. Therefore, branch attachments will
be darkened since they create crevices. Additionally, using
Cycles (render engine in Blender) produced a similar effect as
can be seen in Fig. 9. Therefore, supporting the correctness of
my ambient occlusion implementation.

Fig. 6. Satellite model I made which has geometry ideal for showcasing the different shading modes that had been implemented.

Fig. 7. Satellite model showing ambient occlusion with a short ray distance.

Fig. 8. Effect of ambient occlusion shading on a single neuron as seen in my
render engine.

Fig. 9. Comparison between a render from my render engine (left image) and
a render from Blender’s Cycles render engine (right image). Relatively similar
parameters were used in for both renders suggesting that my render is probably
correct. Main difference is due to using fewer samples per pixel in my renderer.

Fig. 10. Comparison between a render from my render engine (left image) and
a render from Blender’s Cycles render engine (right image). Relatively similar
parameters were used in for both renders suggesting that my render is probably
correct. Main difference is due to using fewer samples per pixel in my renderer.

Surface normals No lighting Shadows AO AO + Shadows AO + Shadows + Diffuse Shadows + Diffuse Diffuse AO + Diffuse

 As seen in Fig. 11. increasing the ambient occlusion’s ray
distance improves the visual quality of a neuron with extensive
dendritic branching. Since rendering the neuron using Cycles
resulted in similar lighting to my own render as seen in Fig. 10.
it is reasonable to assume render engine’s ambient occlusion
implementation is correct.

 Unfortunately, as seen in Fig. 12. neurons rendered with
shadows resulted in degraded image quality. This was likely due
to those shadows having no clear visual connection to the
geometry that created them. Perhaps soft shadows could have a
positive effect on visual quality.

 Combining ambient occlusion with diffuse shading resulted
in the best visual quality as demonstrated in Fig. 13. However,
the light emanating from the left of the image likely contributes
to its visual appeal. Moving the camera so that the light source
is from behind the neuron or head on from the camera as can be
seen in Fig. 14. degraded visual quality. A potential solution
could be to lock the light source with the camera’s movement or
allow the user to move it around the scene. Ideally the light
source would be an environment map that the user would be able
to rotate any way they wished.

Fig. 11. Ambient occlusion as applied to a neuron with extensive dendritic branching. The left side of the image used an AO ray distance of 100 while the right side
used an AO ray distance of 1. This meant that a larger portion of the scene counted toward a given point’s ambient occlusion thereby darkening more of the model.

Fig. 12. Neuron render with ambient occlusion, shadows and diffuse lighting enabled. Demostrates the drawback of using shadows in a neuron visualization.

Fig. 13. Ambient occlusion and diffuse shading applied to a neuron with extensive dendritic branching.

Fig. 14. Neuron renders with diffuse lighting using either a light point from
behind the camera (left image) or a light behind the neuron (right image). While
the left image looks somewhat okay the right image is considerably worse.

 Performance was evaluated manually by looking at the
program’s title bar (show in Fig. 7.) while using various lighting
effects. That data was graphed in Fig. 15. and Fig. 16. Analyzing
those graphs revealed that raytraced ambient occlusion (RTAO),
was the most expensive lighting feature. The cost of ambient
occlusion scaled linearly with how many samples were being
calculated. Specifically, � = � ∗ 0.2 where � is the number of
samples and � is the expected frame time given in milliseconds.
Performance of raytraced surface normals and diffuse lighting
was equivalent with both running at about 0.7 ms. As expected,
rasterization was considerably faster than raytracing with nearly
double the performance running at approximately 0.4 ms.
raytraced shadows were also fast running at around 0.8 ms.

Fig. 15. Performance cost of each effect measured in milliseconds per frame.

Fig. 16. Performance cost of each effect measured in frames per second.

0
5

10
15
20
25
30
35
40
45
50

Fr
am

e
Ti

m
e

(m
s)

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

Fr
am

es
 p

er
 S

ec
o

n
d

IV. CONCLUSION

 Overall, ambient occlusion with diffuse lighting was the
most visually appealing. However, it is necessary to note that the
diffuse lighting had to be from an angle for it to improve visual
quality. Otherwise, it would detract from the render instead of
adding to it. Unfortunately, shadows were disappointing since
they were disconnected from the geometry casting them.
Perhaps using soft shadows would be more visually appealing.
The idea being that they would be affected by the distance
between the geometry creating them and where they would end
up falling in the scene. This property would encode a human
readable distance from any shadow to the geometry that cast that
shadow. As such, future work may wish to explore using soft
shadows for encoding distance to occluding geometry.

 Another effect that should be explored in future work is a
Fresnel Effect. As a test I created this effect in Blender (shown
in Fig. 15.) and it highlights neuron edges marvelously. This
effect depends on geometry angling away from the camera. As
such it works well for curved surfaces such as the side of a
neuron. Unfortunately, curved surfaces can be anywhere in a
model which may cause unwanted highlights as seen in Fig. 15.
Therefore, a better non-photorealistic edge rendering effect
might be necessary. Other lighting effects such as: global
illumination, reflections, refractions, and subsurface scattering
effects could also be explored for both photorealistic and non-
photorealistic lighting in future connectome visualizations.

Fig. 17. Neuron rendered with Cycles using Fresnel shading node [18].

 Performance was more than adequate with as many as 64
ambient occlusion samples running at 80 frames per second.
However, performance degraded near a surface and it is likely
that increasing geometry will require decreasing ambient
occlusion samples. This should not be an issue since even 16
samples were enough for an acceptable ambient occlusion
effect. A denoiser could further decrease the number of samples
necessary for a nice ambient occlusion effect.

 While the lighting techniques used should trivially transfer
to visualizations containing multiple interconnected neurons,
only singular neurons were visualized so far. This was largely
due to the neuron preprocessing pipeline being mostly manual.
As such preparing just a single neuron for visualization required
considerable time and effort. Eliminating this limitation by
replacing or automating the preprocessing pipeline would be
necessary for efficiently preparing multiple neurons for
visualization.

ACKNOWLEDGMENTS

Dr. Usman Alim for providing suggestions and guidance
while supervising the project.

The research group from the Janelia Research Campus that
was behind the hemibrain connectome project [3], [8]. This
project is enabled by their publicly available dataset.

My render engine is based on an early version of the Hazel
Engine that Yan Chernikov is developing as part of a tutorial
series [19]. My event system and logger were both taken from
the Hazel Engine.

A considerably amount of code in my render engine came
from various Vulkan tutorials. Those included Vulkan Tutorial
by Alexander Overvoorde, Vulkan C++ examples and demos by
Sascha Willems, NVIDIA Vulkan Ray Tracing Tutorial by
Martin-Karl Lefrançois and Pascal Gautron [20]–[22].

 Even though the RTAO project by Jakub Boksansky used
DirectX Raytracing (DXR) instead of Vulkan it was still useful
for understanding how ambient occlusion worked [23].

REFERENCES

[1] G. P. Sarma et al., “OpenWorm: overview and recent advances in

integrative biological simulation of Caenorhabditis elegans,” Philos.

Trans. R. Soc. B Biol. Sci., vol. 373, no. 1758, p. 20170382, Oct.

2018.

[2] P. Mamassian, D. C. Knill, and D. Kersten, “The perception of cast

shadows,” Trends Cogn. Sci., vol. 2, no. 8, pp. 288–295, Aug. 1998.

[3] Janelia Research Campus, “Hemibrain,” Janelia Research Campus,

2020. [Online]. Available: https://www.janelia.org/project-

team/flyem/hemibrain.

[4] B. Caulfield, “What’s the Difference Between Ray Tracing and

Rasterization?,” Nvidia, 2018. [Online]. Available:

https://blogs.nvidia.com/blog/2018/03/19/whats-difference-

between-ray-tracing-rasterization/.

[5] Nvidia, “NVIDIA GeForce RTX - Official Launch Event,” YouTube,

2018. [Online]. Available: https://youtu.be/Mrixi27G9yM.

[6] sadtaco and Qesa, “Is the ‘10Gigarays per second’ actually the

effective Gigarays when you factor in tensor cores denoising?,”

Reddit, 2018. [Online]. Available:

https://www.reddit.com/r/nvidia/comments/9a112w/is_the_10gigara

ys_per_second_actually_the/.

[7] S. Nuno, “Bringing Ray Tracing to Vulkan,” Khronos Group, 2019.

[Online]. Available:

https://www.khronos.org/assets/uploads/developers/library/2019-

reboot-develop-red/Bringing-Ray-Tracing-To-Vulkan_Oct19.pdf.

[8] C. S. Xu et al., “A Connectome of the Adult Drosophila Central

Brain,” bioRxiv, p. 2020.01.21.911859, Jan. 2020.

[9] N. Bielopolski, H. Amin, A. A. Apostolopoulou, and E. Rozenfeld,

“Inhibitory muscarinic acetylcholine receptors enhance aversive

olfactory learning in adult Drosophila,” pp. 1–24, 2019.

[10] M. J. Krashes, A. C. Keene, B. Leung, J. D. Armstrong, and S.

Waddell, “Sequential use of mushroom body neuron subsets during

Drosophila odor memory processing,” vol. 53, no. 1, pp. 103–115,

2008.

[11] Neuronland, “SWC,” 2016. [Online]. Available:

http://www.neuronland.org/NLMorphologyConverter/MorphologyF

ormats/SWC/Spec.html.

[12] Neuroinformatics.NL, “SWC plus (SWC+) format specification.”

[13] cnlbob and Smrfeld, “SWC Mesher,” github, 2017. [Online].

Available: https://github.com/mcellteam/swc_mesher.

[14] S. Kopacz, “RTX Rendering Project,” 2019. [Online]. Available:

https://beskamir.github.io/projects/rendering-project.

[15] T. Stachwiak, “Stochastic all the things: Raytracing in hybrid real-

time rendering,” in Digital Dragons, 2018.

[16] Scratchapixel, “Global Illumination in Practice: Monte Carlo Path

Tracing,” Scratchapixel 2.0, 2016. [Online]. Available:

https://www.scratchapixel.com/lessons/3d-basic-rendering/global-

illumination-path-tracing/global-illumination-path-tracing-practical-

implementation.

[17] S. Kopacz, “Spacecraft,” ArtStation, 2018. [Online]. Available:

https://www.artstation.com/artwork/y969K.

[18] Blender, “Fresnel Node,” Blender, 2020. .

[19] Y. Chernikov, “Hazel Engine,” github, 2020. [Online]. Available:

https://github.com/TheCherno/Hazel.

[20] A. Overvoorde, “Vulkan Tutorial,” vulkan-tutorial, 2017. [Online].

Available: https://vulkan-tutorial.com/.

[21] S. Willems, “Vulkan C++ examples and demos,” github, 2020.

[Online]. Available: https://github.com/SaschaWillems/Vulkan.

[22] M.-K. Lefrançois and P. Gautron, “NVIDIA Vulkan Ray Tracing

Tutorial,” Nvidia, 2019. [Online]. Available:

https://developer.nvidia.com/rtx/raytracing/vkray.

[23] J. Boksansky, “RTAO,” github, 2019. .

