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Abstract—Current connectome visualizations use simple or 
unlit shading techniques with a set of colors depicting different 
neuron types. Unfortunately, the lack of lighting information 
causes the resulting renders to appear flat and homogeneous. This 
approach may be problematic, as it not only degrades visual 
appeal but also makes the visualization difficult to analyze. As a 
solution, I wrote a renderer that used lighting techniques such as 
shadows or ambient occlusion to improve the visual clarity of 
connectome map visualizations. Using ambient occlusion alone 
resulted in better visual quality than combining it with shadows. 
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I. INTRODUCTION 

 Connectome maps aim to comprehensively map all the 
neural connections within a given organism’s nervous system. 
These maps allow researchers not only to better understand the 
nervous system of the organism that they are studying but also 
to simulate it, as has been done with Caenorhabditis elegans [1]. 
Additionally, connectome maps allow for visualizations which 
can depict individual neurons. This makes for stunning visuals 
during publications as well as being able to aid in understanding 
and teaching neuroscience concepts.  

 Unfortunately, current visualization techniques tend to use 
basic or completely unlit shading. Due to our visual system’s 
reliance on lighting information, the lack of proper shading 
techniques decreases both the visual appeal and informative 
value of those visualizations. For instance, without proper 
lighting information, depth and edge detection become harder, 
which essentially makes the image appear flat and  
homogeneous [2]. This makes it more difficult to visually trace 
individual neurons as can be seen in Fig. 1. Using distinct colors 
for different neurons can help alleviate this issue but there will 
still be self-overlapping problems due to the branching nature of 
neurons. In addition, current visualizations tend to only use 
distinct colors for neuron types instead of unique colors for each 
neuron in a scene. This will inevitably result in visualizations 
with multiple unique neurons depicted in the same color, further 
decreasing visual clarity. Thus, simply including lighting 
information, by using various shading techniques such as 
shadows and ambient occlusion (AO) should considerably 
improve the clarity and visual appeal of connectome 
visualizations. Raytracing is preferred over rasterization as 
global lighting requires scene data. Since raytracing is more 
expensive than rasterization, optimizations and sufficiently 
powerful hardware are necessary for an interactive renderer.  

 

Fig. 1. Example of existing visualization techniques for connectome data as 
used by the hemibrain connectome project [3]. 

 Therefore, my plan for this project was to implement and 
evaluate a real-time raytracer render engine with various global 
lighting effects for connectome visualization. I primarily wanted 
to explore shadows and ambient occlusion since those seemed 
to be the most impactful lighting effects for increasing the visual 
appeal and readability of a connectome visualization. Shadows 
help estimate depth by grounding objects within a scene. 
Meanwhile ambient occlusion reveals depth detail in objects by 
darkening cavities that are likely occluded from most light 
sources in the scene. As mentioned previously, raytracing is 
preferred over rasterization because scene information is 
directly accessible, which allows for better lighting effects. With 
rasterization, it is impossible to check for other geometry when 
shading a given fragment (triangle). This is a fundamental 
limitation of rasterization necessitating the development of 
various hacks to approximate effects which can be trivially done 
using raytracing [4]. An example of visual discrepancy between 
a trivial raytraced solution and an unnecessarily complicated 
rasterized workaround can be clearly seen in Fig. 2 with regards 
to ambient occlusion.  

 The main downside of raytracing is its performance penalty 
but thanks to a combination of algorithms, optimizations, and 
custom hardware, nontrivial real-time raytracing is possible on 
consumer grade hardware. Nvidia created the most accessible 
and well packaged solution for real-time raytracing when they 
made their RTX series graphics cards [5]. Their solution neatly 
packaged a hardware accelerated ray-triangle intersection solver 
with well optimized software for generating the bounding 
volume hierarchy (BVH) for a given scene. Therefore, allowing 
for the computation of around 10 billion rays per second in ideal 
conditions [6]. For a large connectome visualization, I expect 
that value to be closer to 2 billion rays per second.  



 

Fig. 2. Comparison between raytraced ambient occlusion (RTAO) and 
rasterized ambient occlusion (SSAO) [7]. As evident the raytraced version is 
considerably shaper and has fewer inaccuracies than the rasterized equivalent. 
Take specific note of the couch and basket. 

II. METHODOLOGY 

A. Materials 

I developed the entire project using CLion on Windows 10. 
As such, the entire program was written in C++ and used the 
CMake build system. Libraries used in this project were assimp, 
glfw, mingw-std-threads, spdlog, glm, simpleini, stb, and 
vulkan-headers. The version of Vulkan used for this project was 
version 1.1.101.0. Additionally, a Python script was written to 
generate an image with light ray directions. Version control was 
done using Git with the repository self-hosted on my server. 

In terms of hardware the project was mainly developed on 
my desktop using an RTX  2080 GPU. This was only necessary 
for using hardware accelerated raytracing and I was still able to 
use my laptop with a Nvidia 960m GPU when working with just 
the rasterizer.  

B. Connectome Dataset 

The hemibrain connectome by the research group at the 
Janelia Research Campus is currently the largest synaptic-level 
connectome [3], [8]. Their goal is to create a map with synaptic 
resolution of the adult fruit fly (Drosophila melanogaster), a 
species often used in neuroscience research [3], [8]–[10]. They 
also made their entire dataset publicly available. My first 
objective was to write or find a program to open or convert swc 
files into a more common model format. I began by researching 
how neuron skeletons were stored in a swc file format [11], [12]. 
This allowed me to write a simple swc loader which simply 
place objects at the vertices specified in the swc file. However, 
in the interest of time, I switched to using SWC Mesher, a 
Blender addon for converting swc files into obj files [13]. 
Therefore, refocusing the project on building a render engine 
rather than a neuron modeler. 

C. Renderer 

 Last winter, I wrote a render engine which used Nvidia’s 
hardware-accelerated raytracing technology [14]. That render 
engine was reused as a starting point for this project. However, 
some refactoring was necessary as my focus last year was on 
learning Vulkan and RTX which lead to a suboptimal 
implementation. While refactoring the renderer, I also added or 
fixed various features that I neglected last year. These upgrades 
improved the overall quality of the render engine which made it 
considerably easier to work with. Once those upgrades were 
completed, I focused on features that were necessary for the 
current project, such as implementing lighting effects and 
loading neurons.  

 Optionally, I hoped to combine all the lighting effects with 
deferred rendering as illustrated in Fig. 3. This would result in a 
hybrid render engine that would use rasterization for local 
lighting and raytracing for global lighting. The hybrid render 
engine would lead to better visuals at a lower performance cost 
by combining the best of both rendering techniques. Sadly, 
instead of a fancy deferred rendering pipeline, I essentially wrote 
a single monolithic shader that computer raytraced diffuse 
lighting, shadows, and ambient occlusion in a single pass. 
Related to that, enabling and disabling features required 
modifying the shader file and recompiling it. Although this was 
undesirable from a long-term maintainability perspective, it was 
acceptable for the purposes of the project. 

 

Fig. 3. Hybrid rendering pipeline in Project PICA PICA as presented by 
Tomasz Stachowiak from Electronic Arts at Digital Dragons 2018 [15].  

D. Lighting 

 Implementing raytraced ambient occlusion was my primary 
focus. This was because the render engine I was reusing already 
supported raytraced shadows and ambient occlusion was 
expected to add depth detail to the scene. If I completed that with 
time to spare, my plan was to add as many lighting effects as 
possible. With the goal being a more readable and appealing 
visualization.  

 Ambient occlusion works by sending rays in every direction 
around the point that is being shaded and checking if they hit 
anything. The length of those rays determines how far away 
intersections with other geometry are counted as occlusions. 
Since checking every possible direction is impractical, only a 
handful of rays are cast. Those rays are uniformly distributed in 
every possible direction around the point and are cast in a 
random order as can be seen in Fig. 4.  



 For this, I wrote a Python script which generated an image 
texture that contained the directions light should travel in. 
Unfortunately, this process compressed the directions to only 
those that can be represented in an 8-bit rgb image. This is likely 
why the texture based on values from the Halton sequence was 
repetitive as can be seen in Fig. 5. Conversion from �, �, � floats 
that were between -1 and 1 to �, �, � integers that were between 0 
and 255 was done using (� + 1) ∗ 128. The reason for using an 
image as opposed to a single value was to vary the light direction 
for each ray. Otherwise, I would have a single light source for 
the entire scene resulting in direct shadows.  

 Calculating directions was based on the Global Illumination 
and Path Tracing lesson from Scrachapixel 2.0 [16]. I first 
generated a sequence of random values uniformly distributed in 
the range [0,1]. This was done using Python’s random function 
since the Halton sequence resulted in a repeating image as can 
be seen in Fig. 5. Repetition was undesirable because the image 
was accessed linearly based on screen coordinates and sample 
count. Therefore, propagating obvious texture repetitions to the 
final render. The following equations were used to compute the 
directions light rays should be cast: � = �1 − �� ∗ �� ∗ cos(2���), 

� = �1 − �� ∗ �� ∗ sin(2���)  and � = ��  where ��  and ��  are 
consecutive values from the sequence of uniformly distributed 
values ranging from 0 to 1.  

 The directions from the image had to be transformed to the 
surface normal of the point that they were used for. To do this, I 
created a transformation matrix consisting of the surface normal 
and two other orthogonal vectors. The first of those vectors was 
computed using �0, −��, ��� where � is the normal vector. The 
second vector was computed using a cross product of the normal 
vector with the first vector. Finally, the transformation matrix 
was created from the first, second, and normal vectors. The 
direction could then be easily transformed to the surface normal 
of the spot it was needed for by multiplying it with the 
transformation matrix for that point. 

 

Fig. 4. Hemisphere sampling for calculating global illumination effects like 
ambient occlusion. The left image is based on values from the Halton sequence, 
while the right image is based on completely random values. As evident, using 
values from the Halton sequence results in more uniformly distributed points 
on the hemisphere. Color intensity of each point relates to the order in which it 
was drawn, with darker points being drawn before lighter points. This is 
important as it illustrates that the points are placed in a random order on the 
hemisphere.  

 

Fig. 5. Samples of the textures storing hemisphere directions for calculating 
ambient occlusion. The top texture is based on values from the Halton sequence 
while the bottom texture is based on completely random values. As evident, the 
top image has repetition while the bottom image is sufficiently random. 

E. Performance Evaluation 

 My hope was to achieve real-time rendering, which I defined 
as around 60 frames per second on a consumer grade RTX GPU. 
I also planned on assessing the performance cost of each lighting 
effect. This feature would have helped determine which features 
were worth using as well as evaluate the interactivity of the 
render engine.  

III. RESULTS 

 Unfortunately, when I planned this project, I was expecting 
considerably fewer bugs and complications than I ended up 
encountering. This miscalculation meant that by the time I 
updated my renderer and was able to load neurons from the 
hemibrain connectome, I had only enough time to implement 
ambient occlusion. Despite running out of time to implement 
additional lighting effects, I was still able to complete the main 
shading features I had set out to implement. Fig. 6. shows all 
these effects in action on a satellite test model I had created [17]. 
This model had excellent topology with self-shadowing and 
detailed crevices making it ideal for showcasing shadows and 
ambient occlusion. Sadly, the generated neurons have noticeably 
worse topology with fewer crevices. As a result, neurons had 
more lighting artifacts than the satellite model. 

 Additionally, decreasing the ray distance when calculating 
ambient occlusion further contrasts crevices with flat or round 
regions of the model. This effect is visualized in Fig. 7. where I 
decreased the AO ray distance from 1 to 0.01. Unfortunately, 
this effect would not be applicable for neurons as they do not 
have sharp crevices like the satellite model. Decreasing the ray 
distance is a trade off since now there is no large-scale ambient 
occlusion. For instance, as seen in Fig. 6. the inside of the dish 
is completely white whereas it had been darker previously. 

 Applying ambient occlusion to a single neuron darkens the 
inside parts of branch attachments as seen in Fig. 8. This is 
consistent with intuition since as seen previously, ambient 
occlusion darkens crevices. Therefore, branch attachments will 
be darkened since they create crevices. Additionally, using 
Cycles (render engine in Blender) produced a similar effect as 
can be seen in Fig. 9. Therefore, supporting the correctness of 
my ambient occlusion implementation. 



 

Fig. 6. Satellite model I made which has geometry ideal for showcasing the different shading modes that had been implemented. 

 

Fig. 7. Satellite model showing ambient occlusion with a short ray distance.  

 

Fig. 8. Effect of ambient occlusion shading on a single neuron as seen in my 
render engine. 

 

Fig. 9. Comparison between a render from my render engine (left image) and 
a render from Blender’s Cycles render engine (right image). Relatively similar 
parameters were used in for both renders suggesting that my render is probably 
correct. Main difference is due to using fewer samples per pixel in my renderer. 

 

Fig. 10. Comparison between a render from my render engine (left image) and 
a render from Blender’s Cycles render engine (right image). Relatively similar 
parameters were used in for both renders suggesting that my render is probably 
correct. Main difference is due to using fewer samples per pixel in my renderer.  

Surface normals No lighting Shadows AO AO + Shadows AO + Shadows + Diffuse Shadows + Diffuse Diffuse AO + Diffuse 



 As seen in Fig. 11. increasing the ambient occlusion’s ray 
distance improves the visual quality of a neuron with extensive 
dendritic branching. Since rendering the neuron using Cycles 
resulted in similar lighting to my own render as seen in Fig. 10. 
it is reasonable to assume render engine’s ambient occlusion 
implementation is correct.  

 Unfortunately, as seen in Fig. 12. neurons rendered with 
shadows resulted in degraded image quality. This was likely due 
to those shadows having no clear visual connection to the 
geometry that created them. Perhaps soft shadows could have a 
positive effect on visual quality.  

 Combining ambient occlusion with diffuse shading resulted 
in the best visual quality as demonstrated in Fig. 13. However, 
the light emanating from the left of the image likely contributes 
to its visual appeal. Moving the camera so that the light source 
is from behind the neuron or head on from the camera as can be 
seen in Fig. 14. degraded visual quality. A potential solution 
could be to lock the light source with the camera’s movement or 
allow the user to move it around the scene. Ideally the light 
source would be an environment map that the user would be able 
to rotate any way they wished. 

 

Fig. 11. Ambient occlusion as applied to a neuron with extensive dendritic branching. The left side of the image used an AO ray distance of 100 while the right side 
used an AO ray distance of 1. This meant that a larger portion of the scene counted toward a given point’s ambient occlusion thereby darkening more of the model.  

 

Fig. 12. Neuron render with ambient occlusion, shadows and diffuse lighting enabled. Demostrates the drawback of using shadows in a neuron visualization. 



 

Fig. 13. Ambient occlusion and diffuse shading applied to a neuron with extensive dendritic branching.  

 

Fig. 14. Neuron renders with diffuse lighting using either a light point from 
behind the camera (left image) or a light behind the neuron (right image). While 
the left image looks somewhat okay the right image is considerably worse. 

 Performance was evaluated manually by looking at the 
program’s title bar (show in Fig. 7.) while using various lighting 
effects. That data was graphed in Fig. 15. and Fig. 16. Analyzing 
those graphs revealed that raytraced ambient occlusion (RTAO), 
was the most expensive lighting feature. The cost of ambient 
occlusion scaled linearly with how many samples were being 
calculated. Specifically, � = � ∗ 0.2  where �  is the number of 
samples and � is the expected frame time given in milliseconds. 
Performance of raytraced surface normals and diffuse lighting 
was equivalent with both running at about 0.7 ms. As expected, 
rasterization was considerably faster than raytracing with nearly 
double the performance running at approximately 0.4 ms. 
raytraced shadows were also fast running at around 0.8 ms.  

 

Fig. 15. Performance cost of each effect measured in milliseconds per frame.  

 

Fig. 16. Performance cost of each effect measured in frames per second.  
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IV. CONCLUSION 

 Overall, ambient occlusion with diffuse lighting was the 
most visually appealing. However, it is necessary to note that the 
diffuse lighting had to be from an angle for it to improve visual 
quality. Otherwise, it would detract from the render instead of 
adding to it. Unfortunately, shadows were disappointing since 
they were disconnected from the geometry casting them. 
Perhaps using soft shadows would be more visually appealing. 
The idea being that they would be affected by the distance 
between the geometry creating them and where they would end 
up falling in the scene. This property would encode a human 
readable distance from any shadow to the geometry that cast that 
shadow. As such, future work may wish to explore using soft 
shadows for encoding distance to occluding geometry.  

 Another effect that should be explored in future work is a 
Fresnel Effect. As a test I created this effect in Blender (shown 
in Fig. 15.) and it highlights neuron edges marvelously. This 
effect depends on geometry angling away from the camera. As 
such it works well for curved surfaces such as the side of a 
neuron. Unfortunately, curved surfaces can be anywhere in a 
model which may cause unwanted highlights as seen in Fig. 15. 
Therefore, a better non-photorealistic edge rendering effect 
might be necessary. Other lighting effects such as: global 
illumination, reflections, refractions, and subsurface scattering 
effects could also be explored for both photorealistic and non-
photorealistic lighting in future connectome visualizations. 

 

Fig. 17. Neuron rendered with Cycles using Fresnel shading node [18]. 

 Performance was more than adequate with as many as 64 
ambient occlusion samples running at 80 frames per second. 
However, performance degraded near a surface and it is likely 
that increasing geometry will require decreasing ambient 
occlusion samples. This should not be an issue since even 16 
samples were enough for an acceptable ambient occlusion 
effect. A denoiser could further decrease the number of samples 
necessary for a nice ambient occlusion effect. 

 While the lighting techniques used should trivially transfer 
to visualizations containing multiple interconnected neurons, 
only singular neurons were visualized so far. This was largely 
due to the neuron preprocessing pipeline being mostly manual. 
As such preparing just a single neuron for visualization required 
considerable time and effort. Eliminating this limitation by 
replacing or automating the preprocessing pipeline would be 
necessary for efficiently preparing multiple neurons for 
visualization. 
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My render engine is based on an early version of the Hazel 
Engine that Yan Chernikov is developing as part of a tutorial 
series [19]. My event system and logger were both taken from 
the Hazel Engine. 

A considerably amount of code in my render engine came 
from various Vulkan tutorials. Those included Vulkan Tutorial 
by Alexander Overvoorde, Vulkan C++ examples and demos by 
Sascha Willems, NVIDIA Vulkan Ray Tracing Tutorial by 
Martin-Karl Lefrançois and Pascal Gautron [20]–[22]. 

 Even though the RTAO project by Jakub Boksansky used 
DirectX Raytracing (DXR) instead of Vulkan it was still useful 
for understanding how ambient occlusion worked [23]. 
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